0
0
1
2
专栏/.../

TiKV 源码阅读三部曲(二)读流程

 TiDB社区小助手  发表于  2022-11-08
原创

作者简介:

谭新宇,清华大学软件学院研三在读,Apache IoTDB committer,Talent Plan Community mentor。

TiKV 是一个支持事务的分布式 Key-Value 数据库,目前已经是 CNCF 基金会 的顶级项目。

作为一个新同学,需要一定的前期准备才能够有能力参与 TiKV 社区的代码开发,包括但不限于学习 Rust 语言,理解 TiKV 的原理和在前两者的基础上了解熟悉 TiKV 的源码。

笔者将结合 TiKV 源码解析系列文章,基于 6.1 版本的源码撰写三篇博客,分别介绍以下三个方面:

希望此三篇博客能够帮助对 TiKV 开发感兴趣的新同学尽快了解 TiKV 的 codebase。本文为第二篇博客,将主要介绍 TiKV 中一条读请求的全链路流程。

读流程

TiKV 源码解析系列文章(十九)read index 和 local read 情景分析 介绍了 TiKV 3.x 版本的 ReadIndex/LeaseRead 实现方案。

本小节将在 TiKV 6.1 版本的源码基础上,以一条读请求为例,介绍当前版本读请求的全链路执行流程。

前文已经提到,可以从 kvproto 对应的 service TiKV 中了解当前 TiKV 支持的 RPC 接口。

经过简单整理,常用的读接口如下:

// Key/value store API for TiKV.
service Tikv { 

    rpc KvGet(kvrpcpb.GetRequest) returns (kvrpcpb.GetResponse) {}
    rpc KvScan(kvrpcpb.ScanRequest) returns (kvrpcpb.ScanResponse) {}
    rpc KvBatchGet(kvrpcpb.BatchGetRequest) returns (kvrpcpb.BatchGetResponse) {}

    rpc RawGet(kvrpcpb.RawGetRequest) returns (kvrpcpb.RawGetResponse) {}
    rpc RawBatchGet(kvrpcpb.RawBatchGetRequest) returns (kvrpcpb.RawBatchGetResponse) {}
    rpc RawScan(kvrpcpb.RawScanRequest) returns (kvrpcpb.RawScanResponse) {}
    rpc RawBatchScan(kvrpcpb.RawBatchScanRequest) returns (kvrpcpb.RawBatchScanResponse) {}

    ...
}

以下将以最常用的 KvGet 接口为例介绍读流程,其他的读接口所经过的模块大致相似,之后也可以用断点调试的方案去自行阅读。

KVService

在 KVService 中, handle_request 宏将业务逻辑封装到了 future_get 函数中。在 future_get 函数中,主要使用了storage.get(req.take_context()Key::from_raw(req.get_key()), req.get_version().into())函数将请求路由到 Storage 模块去执行。

为了可观测性,当前 TiKV 在读写关键路径上加了很多全局和 request 级别的 metric,这一定程度上影响了刚开始阅读代码的体验。其实刚开始熟悉代码时只需要关注核心逻辑即可,metric 相关的代码可以先不用细究。

impl<T: RaftStoreRouter<E::Local> + 'static, E: Engine, L: LockManager, F: KvFormat> Tikv
    for Service<T, E, L, F>
{
    handle_request!(kv_get, future_get, GetRequest, GetResponse, has_time_detail);
}

fn future_get<E: Engine, L: LockManager, F: KvFormat>(
    storage: &Storage<E, L, F>,
    mut req: GetRequest,
) -> impl Future<Output = ServerResult<GetResponse>> {

    ...

    let v = storage.get(
        req.take_context(),
        Key::from_raw(req.get_key()),
        req.get_version().into(),
    );

    async move {
        let v = v.await;
        
        ...
        
        Ok(resp)
    }
}

Storage

在 Storage 模块的 get 函数中,所有的 task 都会被 spawn 到 readPool 中执行,具体执行的任务主要包含以下两个工作:

  • 使用Self::with_tls_engine(|engine| Self::snapshot(engine, snap_ctx)).await?获取 snapshot
  • 使用snap_store.get(&key, &mut statistics)基于获取到的 snapshot 获取符合对应事务语义的数据

第二个工作比较简单,本小节不再赘述,以下主要介绍第一个工作的具体代码流程。

/// Get value of the given key from a snapshot.
///
/// Only writes that are committed before `start_ts` are visible.
pub fn get(
    &self,
    mut ctx: Context,
    key: Key,
    start_ts: TimeStamp,
) -> impl Future<Output = Result<(Option<Value>, KvGetStatistics)>> {

    ...

    let res = self.read_pool.spawn_handle(
        async move {

            ...

            let snap_ctx = prepare_snap_ctx(
                &ctx,
                iter::once(&key),
                start_ts,
                &bypass_locks,
                &concurrency_manager,
                CMD,
            )?;
            let snapshot =
                Self::with_tls_engine(|engine| Self::snapshot(engine, snap_ctx)).await?;

            {
                let begin_instant = Instant::now();
                let stage_snap_recv_ts = begin_instant;
                let buckets = snapshot.ext().get_buckets();
                let mut statistics = Statistics::default();
                let result = Self::with_perf_context(CMD, || {
                    let _guard = sample.observe_cpu();
                    let snap_store = SnapshotStore::new(
                        snapshot,
                        start_ts,
                        ctx.get_isolation_level(),
                        !ctx.get_not_fill_cache(),
                        bypass_locks,
                        access_locks,
                        false,
                    );
                    snap_store
                    .get(&key, &mut statistics)
                    // map storage::txn::Error -> storage::Error
                    .map_err(Error::from)
                    .map(|r| {
                        KV_COMMAND_KEYREAD_HISTOGRAM_STATIC.get(CMD).observe(1_f64);
                        r
                    })
                });
                
                ...
        
                Ok((
                    result?,
                    KvGetStatistics {
                        stats: statistics,
                        latency_stats,
                    },
                ))
            }
        }
        .in_resource_metering_tag(resource_tag),
        priority,
        thread_rng().next_u64(),
    );
    async move {
        res.map_err(|_| Error::from(ErrorInner::SchedTooBusy))
            .await?
    }
}

对于Self::snapshot(engine, snap_ctx)函数,其会经由storage::snapshot -> kv::snapshot -> raftkv::async_snapshot -> raftkv::exec_snapshot的调用链来到ServerRaftStoreRouter::read函数中。

/// Get a snapshot of `engine`.
fn snapshot(
    engine: &E,
    ctx: SnapContext<'_>,
) -> impl std::future::Future<Output = Result<E::Snap>> {
    kv::snapshot(engine, ctx)
        .map_err(txn::Error::from)
        .map_err(Error::from)
}

/// Get a snapshot of `engine`.
pub fn snapshot<E: Engine>(
    engine: &E,
    ctx: SnapContext<'_>,
) -> impl std::future::Future<Output = Result<E::Snap>> {
    let begin = Instant::now();
    let (callback, future) =
        tikv_util::future::paired_must_called_future_callback(drop_snapshot_callback::<E>);
    let val = engine.async_snapshot(ctx, callback);
    // make engine not cross yield point
    async move {
        val?; // propagate error
        let result = future
            .map_err(|cancel| Error::from(ErrorInner::Other(box_err!(cancel))))
            .await?;
        with_tls_tracker(|tracker| {
            tracker.metrics.get_snapshot_nanos += begin.elapsed().as_nanos() as u64;
        });
        fail_point!("after-snapshot");
        result
    }
}

fn async_snapshot(&self, mut ctx: SnapContext<'_>, cb: Callback<Self::Snap>) -> kv::Result<()> {
    
    ...

    self.exec_snapshot(
        ctx,
        req,
        Box::new(move |res| match res {
            ...
        }),
    )
 .map_err(|e| {
        let status_kind = get_status_kind_from_error(&e);
        ASYNC_REQUESTS_COUNTER_VEC.snapshot.get(status_kind).inc();
        e.into()
    })
}

fn exec_snapshot(
    &self,
    ctx: SnapContext<'_>,
    req: Request,
    cb: Callback<CmdRes<E::Snapshot>>,
) -> Result<()> {

    ...
    
    let mut cmd = RaftCmdRequest::default();
    cmd.set_header(header);
    cmd.set_requests(vec![req].into());
    self.router
        .read(
            ctx.read_id,
            cmd,
            StoreCallback::read(Box::new(move |resp| {
                cb(on_read_result(resp).map_err(Error::into));
            })),
        )
        .map_err(From::from)
}

impl<EK: KvEngine, ER: RaftEngine> LocalReadRouter<EK> for ServerRaftStoreRouter<EK, ER> {
    fn read(
        &self,
        read_id: Option<ThreadReadId>,
        req: RaftCmdRequest,
        cb: Callback<EK::Snapshot>,
    ) -> RaftStoreResult<()> {
        let mut local_reader = self.local_reader.borrow_mut();
        local_reader.read(read_id, req, cb);
        Ok(())
    }
}

在 ServerRaftStoreRouter::read函数中,其会调用local_readerread函数,并进而路由到LocalReader::propose_raft_command函数。在该函数中,会使用LocalReader::pre_propose_raft_command 函数来判断是否能够 ReadLocal,如果可以则直接获取本地引擎的 snapshot 并执行 callback 返回即可,否则便调用redirect函数连带 callback 路由到 RaftBatchSystem 的对应 normal 状态机中去执行 ReadIndex 读,之后本线程不再处理该任务。

#[inline]
pub fn read(
    &mut self,
    read_id: Option<ThreadReadId>,
    req: RaftCmdRequest,
    cb: Callback<E::Snapshot>,
) {
    self.propose_raft_command(read_id, req, cb);
    maybe_tls_local_read_metrics_flush();
}

pub fn propose_raft_command(
    &mut self,
    mut read_id: Option<ThreadReadId>,
    req: RaftCmdRequest,
    cb: Callback<E::Snapshot>,
) {
    match self.pre_propose_raft_command(&req) {
        Ok(Some((mut delegate, policy))) => {
            let delegate_ext: LocalReadContext<'_, E>;
            let mut response = match policy {
                // Leader can read local if and only if it is in lease.
                RequestPolicy::ReadLocal => {
                 
                    ...

                    let region = Arc::clone(&delegate.region);
                    let response =
                        delegate.execute(&req, &region, None, read_id, Some(delegate_ext));
                    // Try renew lease in advance
                    delegate.maybe_renew_lease_advance(&self.router, snapshot_ts);
                    response
                }
                // Replica can serve stale read if and only if its `safe_ts` >= `read_ts`
                RequestPolicy::StaleRead => {
               
                    ...

                    let region = Arc::clone(&delegate.region);
                    // Getting the snapshot
                    let response =
                        delegate.execute(&req, &region, None, read_id, Some(delegate_ext));

                    ...
                    
                }
                _ => unreachable!(),
            };
           
            ...
            
            cb.invoke_read(response);
        }
        // Forward to raftstore.
        Ok(None) => self.redirect(RaftCommand::new(req, cb)),
        Err(e) => {
            let mut response = cmd_resp::new_error(e);
            if let Some(delegate) = self.delegates.get(&req.get_header().get_region_id()) {
                cmd_resp::bind_term(&mut response, delegate.term);
            }
            cb.invoke_read(ReadResponse {
                response,
                snapshot: None,
                txn_extra_op: TxnExtraOp::Noop,
            });
        }
    }
}

需要注意的是,在此处能否 ReadLocal 的判断是可以并行的,也就是乐观情况下并行的读请求可以并行获取底层引擎的 snapshot,不需要经过 RaftBatchSystem 。

那么到底什么时候可以直接读取 snapshot 而不需要经过 RaftStore 走一轮 ReadIndex 来处理呢?原理就是 Lease 机制,可以先简单阅读一下 TiKV Lease Read 的功能介绍

接着让我们回到LocalReader::pre_propose_raft_command函数,其会进行一系列的检查(此处已略去),如果皆通过则会进一步调用inspector.inspect(req)函数,在其内部,其会进行一系列的判断并返回是否可以 ReadLocal。

  • req.get_header().get_read_quorum():如果该请求明确要求需要用 read index 方式处理,所以返回 ReadIndex。
  • self.has_applied_to_current_term():如果该 leader 尚未 apply 到它自己的 term,则使用 ReadIndex 处理,这是 Raft 有关线性一致性读的一个 corner case。
  • self.inspect_lease():如果该 leader 的 lease 已经过期或者不确定,说明可能出现了一些问题,比如网络不稳定,心跳没成功等,此时使用 ReadIndex 处理,否则便可以使用 ReadLocal 处理。
pub fn pre_propose_raft_command(
    &mut self,
    req: &RaftCmdRequest,
) -> Result<Option<(D, RequestPolicy)>> {
    
    ...

    match inspector.inspect(req) {
        Ok(RequestPolicy::ReadLocal) => Ok(Some((delegate, RequestPolicy::ReadLocal))),
        Ok(RequestPolicy::StaleRead) => Ok(Some((delegate, RequestPolicy::StaleRead))),
        // It can not handle other policies.
        Ok(_) => Ok(None),
        Err(e) => Err(e),
    }
}

fn inspect(&mut self, req: &RaftCmdRequest) -> Result<RequestPolicy> {

    ...

    fail_point!("perform_read_index", |_| Ok(RequestPolicy::ReadIndex));

    let flags = WriteBatchFlags::from_bits_check(req.get_header().get_flags());
    if flags.contains(WriteBatchFlags::STALE_READ) {
        return Ok(RequestPolicy::StaleRead);
    }

    if req.get_header().get_read_quorum() {
        return Ok(RequestPolicy::ReadIndex);
    }

    // If applied index's term is differ from current raft's term, leader transfer
    // must happened, if read locally, we may read old value.
    if !self.has_applied_to_current_term() {
        return Ok(RequestPolicy::ReadIndex);
    }

    // Local read should be performed, if and only if leader is in lease.
    // None for now.
    match self.inspect_lease() {
        LeaseState::Valid => Ok(RequestPolicy::ReadLocal),
        LeaseState::Expired | LeaseState::Suspect => {
            // Perform a consistent read to Raft quorum and try to renew the leader lease.
            Ok(RequestPolicy::ReadIndex)
        }
    }
}

乐观情况下的 ReadLocal 流程我们已经了解,接下来让我们看看 ReadIndex 在 RaftStore 中的执行路径。

RaftStore

前文已经介绍过 RaftBatchSystem 的大体框架,我们已知会有多个 PollHandler 线程调用 poll 函数进入长期循环来事件驱动并动态均衡地管理所有 normal 状态机。

当 ReadIndex 请求被路由到 RaftBatchSystem 中的对应 normal 状态机后,某个 PollHandler 会在接下来的一次 loop 中处理该状态机的消息。

直接定位到RaftPollerhandle_normal函数。可以看到,其会首先尝试获取messages_per_tick次路由到该状态机的消息,接着调用PeerFsmDelegate::handle_msgs函数进行处理,

这里只列出了我们需要关注的几种消息类型:

  • RaftMessage: 其他 Peer 发送过来 Raft 消息,包括心跳、日志、投票消息等。
  • RaftCommand: 上层提出的 proposal,其中包含了需要通过 Raft 同步的操作,以及操作成功之后需要调用的 callback 函数。ReadIndex 请求便是一种特殊的 proposal。
  • ApplyRes: ApplyFsm 在将日志应用到状态机之后发送给 PeerFsm 的消息,用于在进行操作之后更新某些内存状态。
impl<EK: KvEngine, ER: RaftEngine, T: Transport> PollHandler<PeerFsm<EK, ER>, StoreFsm<EK>>
    for RaftPoller<EK, ER, T>
{
    fn handle_normal(
        &mut self,
        peer: &mut impl DerefMut<Target = PeerFsm<EK, ER>>,
    ) -> HandleResult {
        let mut handle_result = HandleResult::KeepProcessing;

        ...

        while self.peer_msg_buf.len() < self.messages_per_tick {
            match peer.receiver.try_recv() {
                // TODO: we may need a way to optimize the message copy.
                Ok(msg) => {
                    ...
                    self.peer_msg_buf.push(msg);
                }
                Err(TryRecvError::Empty) => {
                    handle_result = HandleResult::stop_at(0, false);
                    break;
                }
                Err(TryRecvError::Disconnected) => {
                    peer.stop();
                    handle_result = HandleResult::stop_at(0, false);
                    break;
                }
            }
        }

        let mut delegate = PeerFsmDelegate::new(peer, &mut self.poll_ctx);
        delegate.handle_msgs(&mut self.peer_msg_buf);
        // No readiness is generated and using sync write, skipping calling ready and
        // release early.
        if !delegate.collect_ready() && self.poll_ctx.sync_write_worker.is_some() {
            if let HandleResult::StopAt { skip_end, .. } = &mut handle_result {
                *skip_end = true;
            }
        }

        handle_result
    }
}

impl<'a, EK, ER, T: Transport> PeerFsmDelegate<'a, EK, ER, T>
where
    EK: KvEngine,
    ER: RaftEngine,
{
    pub fn handle_msgs(&mut self, msgs: &mut Vec<PeerMsg<EK>>) {
        for m in msgs.drain(..) {
            match m {
                PeerMsg::RaftMessage(msg) => {
                    if let Err(e) = self.on_raft_message(msg) {
                        error!(%e;
                            "handle raft message err";
                            "region_id" => self.fsm.region_id(),
                            "peer_id" => self.fsm.peer_id(),
                        );
                    }
                }
                PeerMsg::RaftCommand(cmd) => {
                        ...
                        self.propose_raft_command(
                            cmd.request,
                            cmd.callback,
                            cmd.extra_opts.disk_full_opt,
                        );
                    }
                }
                PeerMsg::ApplyRes { res } => {
                    self.on_apply_res(res);
                }
                ...
            }
        }
}

对于 ReadIndex 请求,其会进入PeerMsg::RaftCommand(cmd)分支,进而以PeerFsmDelegate::propose_raft_command -> PeerFsmDelegate::propose_raft_command_internal的调用链走到store::propose函数中,在该函数中,会再进行一次self.inspect(),如果此时 Leader 的 lease 已经稳定,则会调用read_local函数直接获取引擎的 snapshot 并执行 callback 返回,否则调用read_index函数执行 ReadIndex 流程。

在 read_index 函数中,ReadIndex 请求连带 callback 会被构建成一个 ReadIndexRequest 被 push 到 pending_reads 即一个 ReadIndexQueue 中,之后当前线程即可结束本轮流程,之后的事件会进而触发该 ReadIndexRequest 的执行。

pub fn propose<T: Transport>(
    &mut self,
    ctx: &mut PollContext<EK, ER, T>,
    mut cb: Callback<EK::Snapshot>,
    req: RaftCmdRequest,
    mut err_resp: RaftCmdResponse,
    mut disk_full_opt: DiskFullOpt,
) -> bool {

    ...

    let policy = self.inspect(&req);
    let res = match policy {
        Ok(RequestPolicy::ReadLocal) | Ok(RequestPolicy::StaleRead) => {
            self.read_local(ctx, req, cb);
            return false;
        }
        Ok(RequestPolicy::ReadIndex) => return self.read_index(ctx, req, err_resp, cb),
        Ok(RequestPolicy::ProposeTransferLeader) => {
            return self.propose_transfer_leader(ctx, req, cb);
        }
        Ok(RequestPolicy::ProposeNormal) => {
            // For admin cmds, only region split/merge comes here.
            if req.has_admin_request() {
                disk_full_opt = DiskFullOpt::AllowedOnAlmostFull;
            }
            self.check_normal_proposal_with_disk_full_opt(ctx, disk_full_opt)
                .and_then(|_| self.propose_normal(ctx, req))
        }
        Ok(RequestPolicy::ProposeConfChange) => self.propose_conf_change(ctx, &req),
        Err(e) => Err(e),
    };
    fail_point!("after_propose");

    ...
}

fn read_index<T: Transport>(
    &mut self,
    poll_ctx: &mut PollContext<EK, ER, T>,
    mut req: RaftCmdRequest,
    mut err_resp: RaftCmdResponse,
    cb: Callback<EK::Snapshot>,
) -> bool {

    ...

    let mut read = ReadIndexRequest::with_command(id, req, cb, now);
    read.addition_request = request.map(Box::new);
    self.push_pending_read(read, self.is_leader());
    self.should_wake_up = true;

    ...

    true
}

那么什么条件满足后该 ReadIndexRequest 会被 pop 出队列并执行呢?

前面已经提到 ApplyBatchSystem 在应用一批日志之后首先会调用对应的 callback 尽快回复客户端,之后会发送一条 ApplyRes 的消息到 RaftBatchSystem,该消息和以上的 ReadIndex 请求一样被 PollHandler 在一次 loop 中被处理,并最终进入 PeerFsmDelegate::handle_msgs函数的PeerMsg::ApplyRes { res }分支,接着其会调用PeerFsmDelegate::on_apply_res函数并进入store::peer::post_apply函数,在该函数中,ApplyRes 中携带的信息会被用来更新一些内存状态例如raft_groupcmd_epoch_checker,当然,这些信息也会通过store::peer::post_pending_read_index_on_replicaself.pending_reads.pop_front()来释放某些满足条件的 ReadIndexRequest,对于每个 ReadIndexRequest ,此时可以通过store::peer::response_read 函数来获取底层引擎的 Snapshot 并执行 callback 返回。

fn on_apply_res(&mut self, res: ApplyTaskRes<EK::Snapshot>) {
    fail_point!("on_apply_res", |_| {});
    match res {
        ApplyTaskRes::Apply(mut res) => {
            
            ...

            self.fsm.has_ready |= self.fsm.peer.post_apply(
                self.ctx,
                res.apply_state,
                res.applied_term,
                &res.metrics,
            );
        
            ...
        }
        ApplyTaskRes::Destroy {
            region_id,
            peer_id,
            merge_from_snapshot,
        } => {
            ...
        }
    }
}

pub fn post_apply<T>(
    &mut self,
    ctx: &mut PollContext<EK, ER, T>,
    apply_state: RaftApplyState,
    applied_term: u64,
    apply_metrics: &ApplyMetrics,
) -> bool {
    let mut has_ready = false;

    if self.is_handling_snapshot() {
        panic!("{} should not applying snapshot.", self.tag);
    }

    let applied_index = apply_state.get_applied_index();
    self.raft_group.advance_apply_to(applied_index);

    self.cmd_epoch_checker.advance_apply(
        applied_index,
        self.term(),
        self.raft_group.store().region(),
    );

    ...

    if !self.is_leader() {
        self.post_pending_read_index_on_replica(ctx)
    } else if self.ready_to_handle_read() {
        while let Some(mut read) = self.pending_reads.pop_front() {
            self.response_read(&mut read, ctx, false);
        }
    }
    self.pending_reads.gc();

    ...

    has_ready
}

综上,ReadIndexRequest 入队和出队的时机已经被介绍,那么 ReadIndex 的整体流程也基本介绍完整了。

通过本小节,希望您能够了解 KVGet 读请求的完整流程,并进而具备分析其他读请求全链路的能力。

0
0
1
2

版权声明:本文为 TiDB 社区用户原创文章,遵循 CC BY-NC-SA 4.0 版权协议,转载请附上原文出处链接和本声明。

评论
暂无评论