0
0
0
0
专栏/.../

10分钟写一个tidb-ai机器人帮你解答tidb问题

 tidb狂热爱好者  发表于  2024-10-30

前言

周末去参加了tidb的ai学习会。第一时间写了这篇文章。让没有去开会的小伙伴。自己在本地电脑上也能体验这个课程。

第一步。拿到密钥 花费1分钟

到智普ai上去注册一个手机号的账号获取到api密钥。国内的就不需要翻墙。体验一级棒。

image

image2912×774 235 KB

第二步。到国外的tidbserverless注册一个号花费1分钟

或者国内的机器也行。主要tidb服务器在国外速度可能会比较慢。

TiDB Serverless: Cost-Efficient, Simple, Modern MySQL That Scales Effortlessly.

1440×708 59.2 KB

注册好

1414×750 40.4 KB

1440×141 9.6 KB

进去直接有一个tidb可以给你使用。点击生产密码然后获取。用他们给的密钥本地电脑就可以链接到tidb了。

1440×1409 42.6 KB

第三步 复制粘贴 把之前的密码填进去8分钟。

$ mysql \
      --comments -u '3grcM9DRGNroFfR.JW2bS3MJ' -p'!C06Ao41fcuqiHnLr4lycGU6FmKAIwFFC0QO' \
      -h gateway01.us-west-2.prod.aws.tidbcloud.com -P 4000 \
      --ssl-mode=VERIFY_IDENTITY --ssl-ca=/etc/pki/tls/certs/ca-bundle.crt
DROP DATABASE IF EXISTS chatdb;
   CREATE DATABASE chatdb;
   EXIT

在本地电脑安装python组件

$ pip install \
      click==8.1.7 \
      PyMySQL==1.1.0 \
      SQLAlchemy==2.0.30 \
      tidb-vector==0.0.9 \
      pydantic==2.7.1 pydantic_core==2.18.2 \
      dspy-ai==2.4.12 \
      langchain-community==0.2.0 \
      wikipedia==1.4.0 \
      pyvis==0.3.1 \
      openai==1.27.0 \
      zhipuai==2.1.3
$ export ZHIPUAI_API_KEY=${ZHIPUAI_API_KEY} #把智普的apikey填这里
$ cat > build-graph.py <<'EOF'
   import os
   import pymysql
   import dspy
   import enum
   import openai
   
   from zhipuai import ZhipuAI
   from pymysql import Connection
   from pymysql.cursors import DictCursor
   from dspy.functional import TypedPredictor
   from pydantic import BaseModel, Field
   from typing import Mapping, Any, Optional, List
   from langchain_community.document_loaders import WikipediaLoader
   from pyvis.network import Network
   from IPython.display import HTML
   from sqlalchemy import (
       Column,
       Integer,
       String,
       Text,
       JSON,
       ForeignKey,
       BLOB,
       Enum as SQLEnum,
       DateTime,
       URL,
       create_engine,
       or_,
   )
   from sqlalchemy.orm import relationship, Session, declarative_base, joinedload
   from tidb_vector.sqlalchemy import VectorType
   class Entity(BaseModel):
       """List of entities extracted from the text to form the knowledge graph"""
       name: str = Field(
           description="Name of the entity, it should be a clear and concise term"
       )
       description: str = Field(
           description=(
               "Description of the entity, it should be a complete and comprehensive sentence, not few words. "
               "Sample description of entity 'TiDB in-place upgrade': "
               "'Upgrade TiDB component binary files to achieve upgrade, generally use rolling upgrade method'"
           )
       )
   class Relationship(BaseModel):
       """List of relationships extracted from the text to form the knowledge graph"""
       source_entity: str = Field(
           description="Source entity name of the relationship, it should an existing entity in the Entity list"
       )
       target_entity: str = Field(
           description="Target entity name of the relationship, it should an existing entity in the Entity list"
       )
       relationship_desc: str = Field(
           description=(
               "Description of the relationship, it should be a complete and comprehensive sentence, not few words. "
               "Sample relationship description: 'TiDB will release a new LTS version every 6 months.'"
           )
       )
   class KnowledgeGraph(BaseModel):
       """Graph representation of the knowledge for text."""
       entities: List[Entity] = Field(
           description="List of entities in the knowledge graph"
       )
       relationships: List[Relationship] = Field(
           description="List of relationships in the knowledge graph"
       )
   class ExtractGraphTriplet(dspy.Signature):
       text = dspy.InputField(
           desc="a paragraph of text to extract entities and relationships to form a knowledge graph"
       )
       knowledge: KnowledgeGraph = dspy.OutputField(
           desc="Graph representation of the knowledge extracted from the text."
       )
   class Extractor(dspy.Module):
       def __init__(self):
           super().__init__()
           self.prog_graph = TypedPredictor(ExtractGraphTriplet)
       def forward(self, text):
           return self.prog_graph(
               text=text,
               config={
                   "response_format": {"type": "json_object"},
               },
           )
   def interactive_graph(kg: KnowledgeGraph) -> str:
       net = Network(notebook=True, cdn_resources="remote")
       node_map = {}
       for index in range(len(kg.entities)):
           node_map[kg.entities[index].name] = index
           net.add_node(
               index, label=kg.entities[index].name, title=kg.entities[index].description
           )
       for index in range(len(kg.relationships)):
           relation = kg.relationships[index]
           src_index = node_map[relation.source_entity]
           target_index = node_map[relation.target_entity]
           net.add_edge(src_index, target_index)
       filename = "kg.html"
       net.save_graph(filename)
       return filename
   def get_query_embedding(query: str):
       zhipu_ai_client = ZhipuAI(api_key=os.getenv("ZHIPUAI_API_KEY"))
       response = zhipu_ai_client.embeddings.create(
           model="embedding-2",
           input=[query],
       )
       return response.data[0].embedding
   def generate_result(query: str, entities, relationships):
       zhipu_ai_client = ZhipuAI(api_key=os.getenv("ZHIPUAI_API_KEY"))
       entities_prompt = "\n".join(
           map(lambda e: f'(Name: "{e.name}", Description: "{e.description}")', entities)
       )
       relationships_prompt = "\n".join(
           map(lambda r: f'"{r.relationship_desc}"', relationships)
       )
       response = zhipu_ai_client.chat.completions.create(
           model="glm-4-0520",
           messages=[
               {
                   "role": "system",
                   "content": "Please carefully think the user's "
                   + "question and ONLY use the content below to generate answer:\n"
                   + f"Entities: {entities_prompt}, Relationships: {relationships_prompt}",
               },
               {"role": "user", "content": query},
           ],
       )
       return response.choices[0].message.content
   def get_db_url():
       return URL(
           drivername="mysql+pymysql",
           username="改成你的用户",
           password="改成你的密码",
           host="gateway01.us-west-2.prod.aws.tidbcloud.com",
           port=4000,
           database="chatdb",
           query={"ssl_verify_cert": True, "ssl_verify_identity": True},
       )
   engine = create_engine(get_db_url(), pool_recycle=300)
   Base = declarative_base()
   class DatabaseEntity(Base):
       id = Column(Integer, primary_key=True)
       name = Column(String(512))
       description = Column(Text)
       description_vec = Column(VectorType(1024), comment="HNSW(distance=cosine)")
       __tablename__ = "entities"
   class DatabaseRelationship(Base):
       id = Column(Integer, primary_key=True)
       source_entity_id = Column(Integer, ForeignKey("entities.id"))
       target_entity_id = Column(Integer, ForeignKey("entities.id"))
       relationship_desc = Column(Text)
       source_entity = relationship("DatabaseEntity", foreign_keys=[source_entity_id])
       target_entity = relationship("DatabaseEntity", foreign_keys=[target_entity_id])
       __tablename__ = "relationships"
   def clean_knowledge_graph(kg: KnowledgeGraph) -> KnowledgeGraph:
       entity_name_set = set(map(lambda e: e.name, kg.entities))
       kg.relationships = list(
           filter(
               lambda r: r.source_entity in entity_name_set
               and r.target_entity in entity_name_set,
               kg.relationships,
           )
       )
       return kg
   def save_knowledge_graph(kg: KnowledgeGraph):
       data_entities = list(
           map(
               lambda e: DatabaseEntity(
                   name=e.name,
                   description=e.description,
                   description_vec=get_query_embedding(e.description),
               ),
               kg.entities,
           )
       )
       with Session(engine) as session:
           session.add_all(data_entities)
           session.flush()
           entity_id_map = dict(map(lambda e: (e.name, e.id), data_entities))
           print(entity_id_map)
           data_relationships = list(
               map(
                   lambda r: DatabaseRelationship(
                       source_entity_id=entity_id_map[r.source_entity],
                       target_entity_id=entity_id_map[r.target_entity],
                       relationship_desc=r.relationship_desc,
                   ),
                   kg.relationships,
               )
           )
           session.add_all(data_relationships)
           session.commit()
   def retrieve_entities_relationships(question_embedding) -> (List[DatabaseEntity], List[DatabaseRelationship]):
       with Session(engine) as session:
           entity = (
               session.query(DatabaseEntity)
               .order_by(
                   DatabaseEntity.description_vec.cosine_distance(question_embedding)
               )
               .limit(1)
               .first()
           )
           entities = {entity.id: entity}
           relationships = (
               session.query(DatabaseRelationship)
               .options(
                   joinedload(DatabaseRelationship.source_entity),
                   joinedload(DatabaseRelationship.target_entity),
               )
               .filter(
                   or_(
                       DatabaseRelationship.source_entity == entity,
                       DatabaseRelationship.target_entity == entity,
                   )
               )
           )
           for r in relationships:
               entities.update(
                   {
                       r.source_entity.id: r.source_entity,
                       r.target_entity.id: r.target_entity,
                   }
               )
           return entities.values(), relationships
   extractor = Extractor()
   Base.metadata.create_all(engine)
   zhipu_ai_client = dspy.OpenAI(model="glm-4-0520", api_base="https://open.bigmodel.cn/api/paas/v4/", api_key=os.getenv("ZHIPUAI_API_KEY"), model_type="chat", max_tokens=4096)
   dspy.settings.configure(lm=zhipu_ai_client)
   wiki = WikipediaLoader(query="TiDB").load()
   pred = extractor(text=wiki[0].page_content)
   knowledge_graph = clean_knowledge_graph(pred.knowledge)
   interactive_graph(knowledge_graph)
   save_knowledge_graph(knowledge_graph)
   EOF
   ls -l build-graph.py
$ cat > test-graph.py <<'EOF'
   from zhipuai import ZhipuAI
   import os
   import click
   from sqlalchemy import (
       Column,
       Integer,
       String,
       Text,
       ForeignKey,
       URL,
       create_engine,
       or_,
   )
   from typing import Mapping, Any, Optional, List
   from sqlalchemy.orm import relationship, Session, declarative_base, joinedload
   from tidb_vector.sqlalchemy import VectorType
   def get_db_url():
       return URL(
           drivername="mysql+pymysql",
           username="改成你的用户",
           password="改成你的密码",
           host="gateway01.us-west-2.prod.aws.tidbcloud.com",
           port=4000,
           database="chatdb",
           query={"ssl_verify_cert": True, "ssl_verify_identity": True},
       )
   engine = create_engine(get_db_url(), pool_recycle=300)
   Base = declarative_base()
   class DatabaseEntity(Base):
       id = Column(Integer, primary_key=True)
       name = Column(String(512))
       description = Column(Text)
       description_vec = Column(VectorType(1024), comment="HNSW(distance=cosine)")
       __tablename__ = "entities"
   class DatabaseRelationship(Base):
       id = Column(Integer, primary_key=True)
       source_entity_id = Column(Integer, ForeignKey("entities.id"))
       target_entity_id = Column(Integer, ForeignKey("entities.id"))
       relationship_desc = Column(Text)
       source_entity = relationship("DatabaseEntity", foreign_keys=[source_entity_id])
       target_entity = relationship("DatabaseEntity", foreign_keys=[target_entity_id])
       __tablename__ = "relationships"
   def get_query_embedding(query: str):
       zhipu_ai_client = ZhipuAI(api_key=os.getenv("ZHIPUAI_API_KEY"))
       response = zhipu_ai_client.embeddings.create(
           model="embedding-2",
           input=[query],
       )
       return response.data[0].embedding
   def retrieve_entities_relationships(
       question_embedding,
   ) -> (List[DatabaseEntity], List[DatabaseRelationship]):
       with Session(engine) as session:
           entity = (
               session.query(DatabaseEntity)
               .order_by(
                   DatabaseEntity.description_vec.cosine_distance(question_embedding)
               )
               .limit(1)
               .first()
           )
           entities = {entity.id: entity}
           relationships = (
               session.query(DatabaseRelationship)
               .options(
                   joinedload(DatabaseRelationship.source_entity),
                   joinedload(DatabaseRelationship.target_entity),
               )
               .filter(
                   or_(
                       DatabaseRelationship.source_entity == entity,
                       DatabaseRelationship.target_entity == entity,
                   )
               )
           )
           for r in relationships:
               entities.update(
                   {
                       r.source_entity.id: r.source_entity,
                       r.target_entity.id: r.target_entity,
                   }
               )
           return entities.values(), relationships
   def generate_result(query: str, entities, relationships):
       zhipu_ai_client = ZhipuAI(api_key=os.getenv("ZHIPUAI_API_KEY"))
       entities_prompt = "\n".join(
           map(lambda e: f'(Name: "{e.name}", Description: "{e.description}")', entities)
       )
       relationships_prompt = "\n".join(
           map(lambda r: f'"{r.relationship_desc}"', relationships)
       )
       response = zhipu_ai_client.chat.completions.create(
           model="glm-4-0520",
           messages=[
               {
                   "role": "system",
                   "content": "Please carefully think the user's "
                   + "question and ONLY use the content below to generate answer:\n"
                   + f"Entities: {entities_prompt}, Relationships: {relationships_prompt}",
               },
               {"role": "user", "content": query},
           ],
       )
       return response.choices[0].message.content
   @click.command()
   def start_chat():
     while True:
         question = click.prompt("Enter your question")
         question_embedding = get_query_embedding(question)
         entities, relationships = retrieve_entities_relationships(question_embedding)
         result = generate_result(question, entities, relationships)
         click.echo(result)
   if __name__ == '__main__':
     start_chat()
   EOF
   ls -l test-graph.py
$ python build-graph.py;python test-graph.py

1440×1151 127 KB

诀窍在这里 任何知识只要wiki上有,都可以导入到tidb里面。

   wiki = WikipediaLoader(query="TiDB").load()
   pred = extractor(text=wiki[0].page_content)

0
0
0
0

版权声明:本文为 TiDB 社区用户原创文章,遵循 CC BY-NC-SA 4.0 版权协议,转载请附上原文出处链接和本声明。

评论
暂无评论